Genipin-crosslinked fibrin hydrogels as a potential adhesive to augment intervertebral disc annulus repair.

نویسندگان

  • R M Schek
  • A J Michalek
  • J C Iatridis
چکیده

Treatment of damaged intervertebral discs is a significant clinical problem and, despite advances in the repair and replacement of the nucleus pulposus, there are few effective strategies to restore defects in the annulus fibrosus. An annular repair material should meet three specifications: have a modulus similar to the native annulus tissue, support the growth of disc cells, and maintain adhesion to tissue under physiological strain levels. We hypothesized that a genipin crosslinked fibrin gel could meet these requirements. Our mechanical results showed that genipin crosslinked fibrin gels could be created with a modulus in the range of native annular tissue. We also demonstrated that this material is compatible with the in vitro growth of human disc cells, when genipin:fibrin ratios were 0.25:1 or less, although cell proliferation was slower and cell morphology more rounded than for fibrin alone. Finally, lap tests were performed to evaluate adhesion between fibrin gels and pieces of annular tissue. Specimens created without genipin had poor handling properties and readily delaminated, while genipin crosslinked fibrin gels remained adhered to the tissue pieces at strains exceeding physiological levels and failed at 15-30%. This study demonstrated that genipin crosslinked fibrin gels show promise as a gap-filling adhesive biomaterial with tunable material properties, yet the slow cell proliferation suggests this biomaterial may be best suited as a sealant for small annulus fibrosus defects or as an adhesive to augment large annulus repairs. Future studies will evaluate degradation rate, fatigue behaviors, and long-term biocompatibility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A review of the application of reinforced hydrogels and silk as biomaterials for intervertebral disc repair.

The degeneration of the intervertebral disc (IVD) within the spinal column represents a major pain source for many patients. Biological restoration or repair of the IVD using "compressive-force-resistant" and at the same time "cytocompatible" materials would be desirable over current purely mechanical solutions, such as spinal fusion or IVD implants. This review provides an overview of recent r...

متن کامل

Fibrin-genipin annulus fibrosus sealant as a delivery system for anti-TNFα drug.

BACKGROUND CONTEXT Intervertebral discs (IVDs) are attractive targets for local drug delivery because they are avascular structures with limited transport. Painful IVDs are in a chronic inflammatory state. Although anti-inflammatories show poor performance in clinical trials, their efficacy treating IVD cells suggests that sustained, local drug delivery directly to painful IVDs may be beneficia...

متن کامل

Treatment of annular disc tears and “leaky disc syndrome” with fibrin sealant

The surfaces of annulus fibrosus tears are known harbingers of inflammatory constituents within intervertebral discs, stimulating sensitized nocioceptors within those tears. Other current treatment options of internal disc disruption neglect to specifically address the surface of these tears. Therefore, this investigation answers the question: does nonautologous fibrin sealant applied to the su...

متن کامل

Biological evaluation of chitosan salts cross-linked to genipin as a cell scaffold for disk tissue engineering.

Degenerative disc disease has been implicated as a major component of spine pathology. However, although biological repair of the degenerate disk would be the ideal treatment, there is no universally accepted scaffold for tissue engineering of the intervertebral disk. To help remedy this, we investigated the gelation kinetics of various concentrations (2.5 to 10%) of two water-soluble chitosan ...

متن کامل

Rheological and mechanical properties of acellular and cell-laden methacrylated gellan gum hydrogels.

Tissue engineered hydrogels hold great potential as nucleus pulposus substitutes (NP), as they promote intervertebral disc (IVD) regeneration and re-establish its original function. But, the key to their success in future clinical applications greatly depends on its ability to replicate the native 3D micro-environment and circumvent their limitation in terms of mechanical performance. In the pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • European cells & materials

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2011